Energy Related Products – Lot3 Test Report RM Education * PC330 Tower System

Lab Ref: #Resea4977

Electrical and Electronic Household and Office Equipment Measurement of Low Power Consumption (as per BS EN50564: 2011)

Desktop and notebook computers – Measurement of energy consumption (as per relevant sections of IEC 62623)

In making any use of this test report you are expressly agreeing to the disclaimers and notices below:

THIS TEST REPORT IS PROVIDED "AS IS" WITH NO WARRANTY WHATSOEVER, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT LIMITED TO THOSE FOR NON-INFRINGEMENT OF INTELLECTUAL PROPERTY, MERCHANTABILITY OR SATISFACTIRY QUALITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

INTEL ASSUMES NO RESPONSIBILITY FOR ANY ERRORS WHICH MAY APPEAR IN THIS DOCUMENT.

THIS INFORMATION IS FOR REFERENCE USE BY PC INTEGRATORS ONLY. PC INTEGRATORS ARE NOT AUTHORISED TO REFER TO INTEL'S TESTING OR REPORTING ACTIVITIES IN ADVERTISING OR ANY OTHER MANNER.

Information in this document is provided solely in connection with and to enable the use of Intel products. Intel assumes no liability whatsoever, including infringement of any patent or copyright, for sale and use of Intel products except as provided in Intel's Terms and Conditions of Sale for such products. Intel retain the right to make changes to its test specifications and Intel Products at any time, without notice nor does Intel make a commitment to update the information contained herein. The hardware vendor remains solely responsible for the design, sale and functionality of its product, including any liability arising from product infringement or product warranty. Intel accepts no liability for the quality of third party suppliers, and cannot guarantee that third party products are compatible with Intel products or that third party suppliers will not change parts so that they are no longer compliant.

No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document or by the sale of Intel products. Intel products are not intended for use in medical, lifesaving, or life sustaining applications.

IN NO EVENT WILL INTEL BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF USE, BUSINESS INTERRUPTIONS, INCIDENTAL, INDIRECT, SPECULATIVE CONSEQUENTIAL OR SPECIAL DAMAGES, IRRESPECTIVE OF WHETHER INTEL HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

IN NO EVENT WILL INTEL'S TOTAL LIABILITY TO BUYER UNDER THIS AGREEMENT EXCEED THE VALUE OF THE INTEL PRODUCT THAT CAUSES SUCH LOSS OR DAMAGE. IN NO EVENT WILL INTEL BE LIABLE IN INDEMNITY.

THE LIMITATIONS AND DISCLAIMERS SET OUT IN THIS AGREEMENT WERE AN ESSENTIAL ELEMENT IN INTEL AGREEING TO SUPPLY THIS TEST REPORT FREE OF CHARGE.

This Report may only be duplicated in its entirety. The results of this test pertain only to the sample tested.

© 2013 Intel Corporation

^{*} Other brands and names are the trademarks of their respective owners

ERP – Lot3 Test Report RM Education PC330 Tower System Lab Ref: #Resea4977

Test	Tested By	Signature
Lowest Power state (as per Commission Regulation 617/2013)	John Sadler 14 October 2013	All
Sleep Mode Power (as per Commission Regulation 617/2013)	John Sadler 14 October 2013	J.k
Auto-Standby Mode Power (as per Commission Regulation 617/2013)	John Sadler 14 October 2013	All
	Approved	Signature
	Anna Mancari 18 October 2013	Africa 2

Contents

1. Con	nmission Regulation Synopsis		6
1.1.	Synopsis of Commission Regulation	on (EU) No. 617/2013	3 [LOT3]6
1.1	Eco design Requirements:		8
2. Intr	oduction		9
1.3.	Summary		9
1.4.	FYI Items		9
3. Equ	iipment Under Test (EUT)		
3.1	EUT		
4. EU	۲ Configuration		
4.1	EUT Deviations and Comments		
4.2	Software		
5. Lov	vest Power State		
5.1	Test Setup		
5.2	Test Equipment		
5.3	EUT		
5.4	Support Equipment Deviations		
5.5	Test Method		
5.6	Lowest Power State Test Results .		
6. Slee	ep Mode Test Results		14
6.1	Test Setup		14
6.2	Test Equipment		14
6.3	EUT		14
See ta	ble 2.1		14
6.4	Support Equipment Deviations		14
6.5	Test Method		14
6.6	Sleep Mode (S3) Test Results:		14
7. Aut	o-Stand By Test Results		
7.1	Test Setup Auto-Stand by (S4) as	per [Table 2.2]:	
7.2	Test Equipment		
7.3	EUT		15
See ta	ble 2.1		
Intel Co	rporation (UK) Ltd	Page 4 of 16	Pipers Way, Swindon, Wiltshire, England SN3 1RJ Revision A

ERP – Lot3 Test Report RM Education PC330 Tower System Lab Ref: #Resea4977

7.4	Support Equipment Deviations15
7.5	Test Method15
7.6	Auto-Standby Test Results15
8. LC	DT 3 Support Documentation and Reference Documents:16

1. Commission Regulation Synopsis

1.1. Synopsis of Commission Regulation (EU) No. 617/2013 [LOT3]

On July 17 2013, Commission Regulation (EU) No. 1275/2008 [LOT6] was amended to exclude IT and computer equipment.

This means, that following these amendments, and until July 2014:

- Equipment shall provide a Lowest Power State that does not exceed 0.5W
- Equipment shall offer a **Power Management Function** that **automatically switches the computer into a lower power state** than sleep mode.

Note the removal of the where appropriate clause. The Lowest Power State must be provided although it does not have to be active.

After July 2014, there is a requirement for the following information to be made available, as part of the system documentation:

Product type and category: [Server, Desktop, Notebook etc]

- a) Manufacturers name and address
- b) Product model number
- c) Year of manufacture
- d) E_{TEC} value without external graphics card enabled
- e) E_{TEC} value with external graphics card enabled
- f) Idle state power demand
- g) Sleep mode power demand
- h) Sleep mode with WOL enabled
- i) Off mode power demand
- j) Off mode power demand with WOL
- k) Internal power supply efficiency @ 10%, 20%, 50%, 100% of rated power
- I) External power supply efficiency
- m) Noise levels (the declared A-weighted sound power level)
- n) Minimum number of loading cycles the batteries can withstand, for notebooks
- o) The measurement methodology of (e) to (o)

- p) Sequence of steps to achieve stable test condition
- q) Description of how sleep and/or off mode were selected
- r) Sequence of events required o reach the mode where equipment automatically reaches sleep and/or off mode
- s) The duration of idle state prior to sleep mode
- t) Time delay before computer reaches lower power demand than sleep mode
- u) Time delay to display sleep mode
- v) User information on the energy saving potential of power management
- w) User information on how to enable the power management
- x) Where there is an integrated display the mercury content in mg
- y) Test parameters used for measurement
 - a. Voltage and frequency
 - b. Harmonic distortion of supply
 - c. Information and documentation on the instrumentation set-up and circuits used for testing

1.1 Eco design Requirements:

Category A, B, C or D Equipment:

For this system the annual total energy consumption would be calculated from: $E_{tec} = ((8,760 / 1000) * ((0.55*P_{off}) + (0.05*P_{sleep}) + (0.4*P_{idle})))$

The desktop system would be categorized as Category D (E_{TEC} < 211)

2. Introduction

This report presents the results of the low power consumption tests applied to a sample RM Education* PC330 Tower System. Lab Ref: #Resea4977 to the following standard:

• Electrical and Electronic Household and Office Equipment - Measurement of low power consumption (as per Commission Regulation 617/2013)

The testing was carried out by INTEL CORPORATION (UK) LTD at their Engineering test facilities located at

Intel Corporation (UK) Ltd Pipers Way Swindon Wiltshire England SN3 1RJ

This report also details the configuration of the equipment under test, the test methods used and any relevant modifications where appropriate.

A summary of Action Items for hardware related issues are given below.

An Action Item (AI) means that the particular test is not meeting the relevant specification and could prevent correct operation of the named EUT.

Other items in this report may be marked as FYI. These are recommendations or observations that may be of interest to the system designer.

1.3. Summary

- The EUT *passes* the Lowest Power State Test at **0.16W**.
- The EUT *passes* the Power Management Test at **0.16W** which is less than the sleep mode power of **1.99W**.

1.4. FYI Items

• Please note, The System Under Test was set up as table 2.2 on page 12 prior to testing.

ERP – Lot3 Test Report RM Education PC330 Tower System Lab Ref: #Resea4977

3. Equipment Under Test (EUT)

3.1 EUT

Figure 2.1

RM Education* PC330 Tower System

3.2 EUT Configuration

Component	Qty	Manufacturer	Model	AA/Serial	Description	Location
				Number		
System	1	RM*	PC 330 Tower	T093182301	μATX Mini Tower System	N/A
Chassis	1	Chenbro*	PC31176- H02*13246	Not Known	µATX Mini Tower Chassis	N/A
Power Supply	1	AcBel*	PCB029	PCB0291325000010 2A	iPower 85 400 ATX12V 350W Power Supply Unit.	Top rear of chassis
Motherboard	1	FUJITSU*	D3222-B1	42204493	µATX Desktop Motherboard with Intel® Q87 Chipset	N/A
Processor	1	Intel®	CM80646014 64303	N/A	Intel® Core™ i7-4770 Processor (8M Cache, up to 3.90 GHz)	LGA1150 socket
Integrated Graphics	1	Intel®	Intel [®] HD Graphics 4600	N/A	N/A	N/A
SSD	1	Samsung*	SSD 840	S14GNEACC31555L	2.5" 840, 250 GB Solid State Drive	Side mounted bay
HDD	1	Toshiba*	DT01ACA1	830H4JENS	3.5" 1000 GB, 7200 RPM Hard Disk Drive	Lower 3.5" bay
Optical Drive	2	TSSTcorp*	SH-224DB	R93E6YCD4071MZ R93E6YCD4071MY	Optical Media Drive CD/DVD Super Filemaster	5.25" bays
Memory	4	Elixir*	M2X8G64CB8 HC5N-DG	7722123F/D815123E C11C123E/8B11123 D	DIMM, DDR3, 8192 MB, 1600 MHz	DIMM A1/A3 DIMM B2/B4
Card Reader	1	Not known	Not known	130201724	Generic card reader for MS/MS Pro Duo, CFI/CFII/MD, SD/MMC/RS MMC, XD/Smart Media and ext. USB	Upper 3.5" Bay
Front-Panel Daughterboard	1	Not known	Not Known	Not known	Generic USB front panel with 2x USB2, 2x USB3, Audio in and Audio out	Front panel

Table 2.1

3.3 EUT Deviations and Comments

EUT was tested with one Intel[®] Core[™] i7-4770 Processor (8M Cache, up to 3.90 GHz) with EKL* Processor Fan Heatsink. [DFR922512CM-010]

Other parts fitted in the chassis: One Top Motor* 80mm 12V Chassis Fan [DF128025SL-3] attached to the rear of the chassis.

BIOS Version: FUJITSU // American Megatrends Inc. * V4.6.5.4 R1.10.0

3.4 Software

The system was running Microsoft^{*} Windows^{*} 7 Professional 64bit Video Resolution was 1920x1080.

The power options of Microsoft^{*} Windows^{*} 7 and BIOS^{*} were set as below:

Setting	Lowest Power State	Sleep Mode	Power Management	Idle Mode
Display turn off	N/A	1 min	1 min	never
Sleep mode	N/A	1 min	1 min	never
Wireless adaptor Setting	N/A	N/A	N/A	N/A
Hard disk spin down	N/A	1 min	1 min	never
Hybrid sleep	off	on	on	off
Hibernate After	N/A	never	5 min	never
Allow wake timers	off	off	off	off
WOL from S5*	Off	Power on	Power on	Power on
Lot3	enabled	enabled	enabled	enabled
Wake on Link	off	on	on	On
Wake on magic packet	off	on	on	On
Wake on pattern	off	on	on	On
Wake on keyboard*	Disabled	Enabled	Enabled	Enabled

Table 2.2

4. Lowest Power State

4.1 Test Setup

The EUT (equipment under test) was powered from the Kikusui^{*} stabilized AC power supply. This was connected to the U and I input of the Yokogawa^{*}Precision Power Analyzer, using the low power connection method of BS EN 50564.

4.2 Test Equipment

Supplier	Description	Model/Part Number
Kikusui [*]	AC Power Supply	PCR 500M
Yokogawa [*]	Precision Power Analyzer	WT3000
Samsung [*]	Widescreen LCD Monitor	2032BW
NI [*]	GPIB [*] – USB Interface CCA	187965H-01L
Yokogawa [*]	Power Consumption Measuring Software	Version 3.11
NI *	Labview [*] Software	2011

Table 4.1

4.3 EUT

See table 2.1

4.4 Support Equipment Deviations

None

4.5 Test Method

The system power settings were as table 2.2. The unit was powered up into full operating mode. The system was then shut down under software control. Five minutes were allowed for stabilisation, samples were then read for ten minutes and averaged. Stability over the test period was determined by the Yokogawa software using linear regression. If stability was not established the Five minute period was restarted.

4.6 Lowest Power State Test Results

Environmental Status

21.6°C, 52% Humidity, 1001mB Barometric Pressure

Test Voltage V	Frequency Hz	Total Harmonic Distortion %	Average Power W	Apparent Power VI	Crest Factor (Range)
230.3 V	50.00	0.058	0.16	25.62	1.42 (1.34 – 1.49)

Table 4.2

Linear Regression: Stable

5. Sleep Mode Test Results

5.1 Test Setup

The EUT (equipment under test) was powered from the Kikusui^{*} stabilized AC power supply. This was connected to the U and I input of the Yokogawa^{*} Precision Power Analyzer, using the low power connection method of BS EN 50564.

5.2 Test Equipment

Supplier	Description	Model/Part Number
Kikusui [*]	AC Power Supply	PCR 500M
Yokogawa [*]	Precision Power Analyzer	WT3000
Samsung [*]	Widescreen LCD Monitor	2032BW
NI [*]	GPIB [*] – USB Interface CCA	187965H-01L
Yokogawa [*]	Power Consumption Measuring Software	Version 3.11
NI *	Labview [*] Software	2011

Table 4.4

5.3 EUT

See table 2.1

5.4 Support Equipment Deviations

None

5.5 Test Method

The system was powered up with power settings as in table 2.2. The system was allowed to go into sleep mode. Five minutes were allowed for stabilisation, samples were then read for ten minutes and averaged. Stability over the test period was determined by the Yokogawa software by linear regression. If stability was not established the Five minute period was restarted.

5.6 Sleep Mode (S3) Test Results:

Environmental Status

22.4°C, 63% Humidity, 1003mB Barometric Pressure

Test Voltage V	Frequency Hz	Total Harmonic Distortion %	Average Power W	Apparent Power VI	Crest Factor (Range)
230.3	50.00	0.06	1.99	26.73	1.42
					(1.34 - 1.49)

Table 4.5

Linear Regression: Stable

6. Auto-Stand By Test Results

6.1 Test Setup Auto-Stand by (S4) as per [Table 2.2]:

The EUT (equipment under test) was powered from the Kikusui^{*} stabilized AC power supply. This was connected to the U and I input of the Yokogawa^{*} Precision Power Analyzer, using the low power connection method of BS EN 50564.

6.2 Test Equipment

Supplier	Description	Model/Part Number
Kikusui [*]	AC Power Supply	PCR 500M
Yokogawa [*]	Precision Power Analyzer	WT3000
Samsung [*]	Widescreen LCD Monitor	2032BW
NI [*]	GPIB [*] – USB Interface CCA	187965H-01L
Yokogawa [*]	Power Consumption Measuring Software	Version 3.11
NI *	Labview [*] Software	2011

Table 4.1

6.3 EUT

See table 2.1

6.4 Support Equipment Deviations

None

6.5 Test Method

The system power settings were as table 2.2. The system was allowed to power down. Five minutes were allowed for stabilisation, samples were then read for ten minutes and averaged. Stability over the test period was determined by the Yokogawa software. If stability was not established the Five minute period was restarted.

6.6 Auto-Standby Test Results.

Environmental Status

21.6°C, 52% Humidity, 1001mB Barometric Pressure

Test Voltage V	Frequency Hz	Total Harmonic Distortion %	Average Power W	Apparent Power VI	Crest Factor (Range)
230.3	50.00	0.058	0.16	25.47	1.42 (1.34 - 1.49)

Table 5.2

Linear Regression: Stable System **passes** the auto-standby test No further testing was performed.

7. LOT 3 Support Documentation and Reference Documents:

Commission Regulation (EU) No 617/2013

Electrical and Electronic Household and Office Equipment Measurement of Low Power Consumption *(as per BS EN50564: 2011)*

IEC62623: Desktop and Notebooks Measurement of energy Consumption (as per relevant sections of IEC 62623)